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Dissipation of System and Atom in Two-Photon
Jaynes–Cummings Model with Degenerate
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A method of perturbative expansion of master equation is employed to study the
dissipative properties of system and of atom in the two-photon Jaynes–Cummings model
(JCM) with degenerate atomic levels. The numerical results show that the degeneracy of
atomic levels prolongs the period of entanglement between the atom and the field. The
asymptotic value of atomic linear entropy is apparently increased by the degeneration.
The amplitude of local entanglement and disentanglement is suppressed. The better the
initial coherence property of the degenerate atom, the larger the coherence loss.
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1. INTRODUCTION

A main obstacle of quantum information is the decoherence of qubits. A
quantum system inevitably interacts with its surrounding environment, and the
interaction between the quantum system and its surroundings could lead to deco-
herence. The theory of environment dissipation induced decoherence is addressed
not only in quantum information field (Davidovich et al., 1996; Duan and Guo,
1998; Peixoto and Nemes, 1999; Zurek, 1991) but also in other fields, like brain
process (Hagan, 2000; Tegmark, 2000).

As a candidate for quantum information, cavity QED has been widely studied
in following aspects: quantum network (Cirac et al., 1996; Pellizzari, 1997),
producing entanglement (Cirac and Zoller, 1994a; Gerry, 1996; Zheng and Guo,
2001) and quantum teleportation (Cirac and Parkins, 1994; Davidovich et al.,
1994; Zheng and Guo, 2001), especially in studying the dissipative dynamics of a
quantum system (Brune et al., 1996; Davidovich et al., 1996; Duan and Guo, 1998;
Peixoto and Nemesbut, 1999). This is because the dissipation of cavity QED could
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be monitored in experiment (Brune et al., 1996; Davidovich et al., 1996; Duan and
Guo, 1998), and this is valuable not only to the candidate of quantum information
but also to the research of decoherence theory. In Ref. (Peixoto and Nemes,
1999), the dissipative dynamics of the JCM in the dispersive approximation has
been studied, and the influence of dissipation on the entanglement of the two
subsystems was investigated. In Ref. (Zhou et al., 2001), the authors studied the
field state dissipative dynamics of two-photon Jaynes–Cummings Model (JCM)
and showed that the cavity dissipation affected the coherence properties of the
field. In these studies, the atom is a single pure two-level one. While, in some
case, atomic level is degenerate in the projections of the angular momenta on the
quantization axis (Reshetov, 2000). In Refs. (Zhou et al., 2001, 2002), the authors
studied the case of degenerate atomic levels and showed that the revival period of
the atom population inversion became longer than that of the original JCM. In Ref.
(Zhou et al., 2003), our group has studied the effect of degenerate atomic levels
on the field state dissipation in two-photon JCM. The initial degenerate atomic
states are found to increase the period of entanglement of atom and field, and the
coherence properties of field is affected by the reservoir qualitatively.

The interaction between an atom and a single-mode field via two-photon pro-
cess is a nonlinear one. Giving the explicit solution of the dissipative dynamics of
atom in a nonlinear process is very difficult. So the atomic decoherence property
in a two-photon JCM with degenerate atomic levels is not studied before, despite
that the field decoherence property has been studied (Zhou et al., 2001, 2003).
However, the atom is the information depositor in a quantum information system
(Fleischhauer and Dlukiin, 2000); it is more important to study the atomic deco-
herence property than that of the field. In the present paper, considering degenerate
atomic levels and using the method of perturbative expansion for master equation,
we study the dissipative dynamics of system and of atom in two-photon JCM. We
show that the period of entanglement between atom and field is prolonged explic-
itly. In case of degenerate atomic levels, contrasting to the case of two levels atom,
the atomic asymptotic value of linear entropy is increased clearly in a same dissi-
pative cavity. This asymptotic value is the largest when the atom is initially in an
equal probability superposition degenerate state. Moreover, the numerical results
show that the degenerate atomic levels increase the mixture degree of nonlinear
situation of two-photon JCM.

2. PERTURBATIVE SOLUTION OF MASTER EQUATION

Let us consider an atom with degenerated levels interacts with a single-mode
electromagnetic field at zero temperature as usual in a high-Q cavity. The dynamics
of the global density operator ρ̂ in interaction representation is governed by the
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master equation

d

dt
ρ̂ = −i [Heff, ρ̂(t)] + κ(2aρ̂a† − aa†ρ̂ − ρ̂aa†), (1)

where κ is the damping constant of the cavity. The effective Hamiltonian Heff

in two-photon JCM with atomic degeneracy is nonlinear. Thus, Equation (1) is
a nonlinear differential equation. Completely solving the equation with the usual
method used in the study of original JCM is very difficult. In order to study
the dissipative dynamics of two-photon JCM, we can solve the master equation
approximately (Yi et al., 2000). While, here, we expand ρ̂(t) in powers of κ but
not t as

ρ̂(t) = ρ̂0(t) + ∂ρ̂(t)

∂κ
κ + 1

2

∂2ρ̂(t)

∂κ2
κ2 + 0(κ2). (2)

In a high-Q (quality factor of cavity) cavity, κ � 1, the effectiveness of the
expansion is assured and the reservation of only fore 3 terms is satisfying.

From Equation (1), each order of differential of ρ̂(t) can be determined by
using iterative method as

d

dt
ρ̂(n)(t) = −i

[
Ĥeff, ρ̂

(n)(t)
] + (

2aρ̂(n−1)(t)a† − aa†ρ̂(n−1)(t) − ρ̂(n−1)(t)aa†),
(3)

with n = 1, 2, 3 . . ., and ρ̂(n)(t) = ∂nρ(t)/∂κn. The solution of Equation (3) is

ρ̂(n)(t) = e−iĤeff t

{∫ t

0
dteiĤeff t

[
2aρ̂(n−1)(t)a†

− aa†ρ̂(n−1)(t) − ρ̂(n−1)(t)aa†)
]
e−iĤeff t

}
eiĤeff t . (4)

So, ρ̂(1)(t) can be calculated from an integer of ρ̂(0)(t), and ρ̂(2)(t) from ρ̂(1)(t),
. . . . Thus, we can get the precise value of ρ̂(t) at least in principle.

We assume that the initial states of the atom–field system can be written as

�(0) =
(∑

mb

e√
2Jb + 1

|Jb,mb〉 +
∑
mc

f√
2Jc + 1

|Jc,mc〉
)

⊗ |α〉 , (5)

where Jb, Jc denote the values of the total electronic angular momenta of resonant
levels b, c respectively, and mb, mc represent their projections on the polarized
direction. |α〉 is the coherence field state of cavity; it can be expanded as |α〉 =
exp(−|α|2/2)

∑
n α/

√
n!|n〉 = ∑

n Fn|α〉. From Equation (5), we easily obtain
the initial density of the system, i.e. ρ̂(0)(0), and further obtain the evolution of
ρ̂(0)(0). In interaction representation, the effective Hamiltonian of the two-photon
JCM within rotating-wave approximation including degenerate atomic levels has
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been obtained in Ref. (Zhou et al., 2003) as

Ĥeff = �[(a†a + 1)(a†a + 2)Rb − (a†a − 1)Rc], (6)

where Rµ = ∑
mµ α2

mµ(|Jµ,mµ〉〈Jµ,mµ|), µ = b, c. � is the Rabi frequency,
which measures the coupling between atom and field. αmµ is defined as

αmµ = (−1)Jb−m

(
Jb 1 Jc

−m 0 m

)
.

The linear entropy is defined as

S = 1 − Tr(ρ̂2), (7)

which can be used to measure the coherence lose and the purity degree of the state.
For a pure state S = 0, otherwise, S > 0, corresponding to a mixture.

Substitute ρ̂(t), ρ̂a(t) into Equation (9). We get the linear entropy of system
S and of atom Sda . Here, we use letter d to denote atomic linear entropy in
JCM in case of degenerate atomic levels. The linear entropy Sda then depends on
a set of parameters (e, f, |α|2 , Jb, Jc, κ/�,�t). In next section, typical values
of the parameters are given to discuss the behavior of S, Sda , and from the
appearance of the linear entropy, the decoherence of the system and the atom and
the disentanglement of atom and field are studied.

3. RESULTS AND DISCUSSION

In experiment (Brune et al., 1987), the resonant atomic levels b, c were
usually the Rydberg states of the atom with angular momenta Jb = 3/2, Jc = 3/2
or Jc = 5/2. By the support of these experiment data, we choose Jb = Jc = 3/2,
which emerges α1/2 = α−1/2 = 1/2

√
15, α3/2 = α−3/2 = 3/2

√
15.

With same set of parameters, we plot the evolution of atomic linear entropy
with and without degeneration to study the effect of atomic degeneracy on the
dissipative dynamics of atom in Fig. 1.

Without degeneration, the atomic is a pure two-level one. Under this case, the
linear entropy has been discussed in Ref. (Zhou et al., 2004). We directly employ
the result in that paper to show the effect of the atomic degeneracy. In the process
of atomic linear entropy evolution, Fig. 1 shows that the behavior of Sa(t) (atomic
linear entropy in non-degenerate case) and Sda both present local maximum and
minimum. This corresponds to the entanglement and disentanglement respectively
of atom and field. In Ref. (Peixoto and Nemes, 1999), the authors have shown
that disentanglement took place at instants td = nπ/ω. Here, contrasting to the
case of non-degeneration (Zhou et al., 2004), the period of entanglement and
disentanglement in case of degenerate atomic levels is obviously prolonged. And
the amplitude of local entanglement and disentanglement is suppressed. We can
also observe that the two asymptotic values are obviously different, i.e. Sda(∞) >
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Fig. 1. Linear entropy of atom as a function of �t , Sda with degenerate atomic levels (solid line), Sa

with two levels atomic state (dotted line), where e = f = 1/
√

2, κ/� = 0.02, |α|2 = 0.5.
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Sa(∞). The linear entropy is seen as a measure of the coherence loss. If the atom
is initially in a degenerate state written in Equation (5), the coherence property is
better than that of without degeneracy. When coherence loss finished completely,
the better the initial coherence property the bigger the coherence loss. We will
show the effect of initial coherence property on the coherence loss in Fig. 2.
By comparing the atomic linear entropy with and without degeneracy, we find
that the degeneracy increases the maximum of the asymptotic value of the linear

Fig. 2. Linear entropy of atom as a function of �t , where κ/� = 0.02,
|α|2 = 0.5, solid line with e = f = 1/

√
2, dotted line with e = 0.4.
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Fig. 2. Continued.

entropy. Thus, the degeneracy of the atom on one hand increases the period of
entanglement, and on the other hand increases the atomic maximum coherence
loss. The result has not been given before.

The dependence of the linear entropy on the photon number is shown in
Fig. 3. It is clear that the period of entanglement does not depend on the average
photon number |α|2. And obviously, the larger the average photon number, the
larger the asymptotic value of the curves. The similar results have been shown in
Ref. (Peixoto and Nemes, 1999). In that paper, the asymptotic values of the linear
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Fig. 3. (a) Linear entropy of the system (atom–field) as a function of �t , where e = f =
1/

√
2, κ/� = 0.01, solid line with |α|2 = 1, dotted line with |α|2 = 0.5. (b) Linear entropy

of the atom as a function of �t , where e = f = 1/
√

2, κ/� = 0.02, solid line with |α|2 = 1,
dotted line with |α|2 = 0.5.
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entropy never exceed 1
2 , while here, the asymptotic values can do. The average

photon number |α|2 is a measure of its classicality. The entanglement of atom and
field proportionally contributes to Sda . Therefore, the larger the |α|2 is the more
rapidly the atom and the system lose their coherence. These properties are also
observed in Ref. (Peixoto and Nemes, 1999; Zhou et al., 2002).

Now, we take different initial atomic degenerate states to show their effect on
the disentanglement and decoherence of atom. In Fig. 2, when the atom is initially
in degenerate state with e = f = 1/

√
2, the asymptotic value is the largest. In this

case, the initial coherence of atom is the best; when dissipation finally finishes,
the coherence loss is the most and the linear entropy is the largest. Figure 2 also
shows that the amplitude of local maximum and minimum of the curves is the
largest in this case. Because of the best initial coherence property of atom, the
atom would best entangle with field. So, the better the initial atomic coherence
the larger the amplitude of local maximum and minimum. Therefore, the better the
initial atomic coherence properties, the larger the asymptotic value of Sda and the
larger the amplitude of local maximum and minimum of Sda .

4. CONCLUSION

We have studied the dissipative dynamics of system and atom in two-photon
JCM with degenerate atomic levels by employing the perturbative expansion of
master equation. The results show that the degeneracy prolongs the period of
entanglement and disentanglement of atom and field qualitatively. This provides
us a way in preparing a long time surviving entangled quantum states needed in
experiment (Cirac and Zoller, 1994b; Kudryavtstev and Knight, 1993; Phoenix and
Barnett, 1993). The degeneracy also increases the asymptotic value of the linear
entropy. This means the coherence loss is increased by the degeneracy. Comparing
to the non-degenerate case, the amplitude of local maximum and minimum of the
linear entropy is suppressed due to the degeneracy. The more average photon
number affects the cavity dissipation by increasing the asymptotic value of the
linear entropy of the atom and the system and making them lose their coherence
more rapidly than usual. The better the initial coherence property of the atom the
larger the asymptotic value of the linear entropy, i.e. the larger the coherence loss.
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